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Diffraction by a short rectilinear crack in a thin elastic plate which is in a contact with a uniform 

acoustic half-space is investigated. The asymptotic forms of the radiation patterns of the scattered 

waves are constructed. The results obtained are compared with the scattering diagram of flexural waves 

at a crack in an isolated plate. 

1. FORMULATION OF THE PROBLEM 

LET A PLATE (z = 0) with a crack along the section A = {I x I< a, y = 0, z = 0), the oscillations of 
which were investigated in [l], be in a contact with an acoustic medium. Suppose that the 
acoustic medium is uniform and located only on one side of the plate. 

The oscillations of the system described are generated by a source which is not specified in 
detail. It is assumed that the sound pressure field u and the plate displacement field Co, 
generated by the source in the problem for a plate without a crack, are known. It is required to 
determine the component of the wave process scattered by the crack. 

The pressure in the medium satisfies the Hehnholtz equation 

Au+k’u=O, z>O (1.1) 

Here k is the wave number of sonic oscillations. The radiation conditions are satisfied at 
infinity. The boundary condition at the plate has the form 

((3’ /ax2 +a2 /&‘)’ -k;)~+D-lul,=o = 0, (x,y} e A, 

4 = p-‘W2ib / dz(,,, , k; = hpw2 / D (1.2) 

In this case, it is assumed that the plate performs flexural oscillations described by the function 
E,. The wave number of the plate oscillations k is defined by the parameters D, p and h (the 
bending rigidity, the material density and the plate thickness, respectively), and by the 
frequency 0. 

The conditions at the crack edges which imply the absence of a transverse force and a 
bending moment agree with the corresponding conditions in the problem for an isolated 
plate [l] 

M*5 = Yy$5, + OS, ) = 0, I-& a 

Ff5 = Yyl(5, + (2 - a&) = 0, lx I< a (1.3) 
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Here o is Poisson’s ratio of the plate material. 
For a sound pressure u in the neighbourhood of the crack the Meixner conditions are 

imposed 

vu = 0(?), 6 < 1 (1.4) 

while the plate displacement near the crack ends must satisfy the condition that the energy is 
finite [2] 

VC = O(P), 8 2 0 (1.5) 

By stretching the coordinates it may be assumed that a= 1. For brevity, this is the case 
considered below. 

2. INTEGRAL EQUATIONS 

The problem is reduced to a system of integral equations over a segment. The scattered field 
u, will be determined using a Fourier transformation with respect to x and y as a sum of four 
terms 

p,(h) being unknown. The function L(u, $ is the Fourier transform of condition (1.2) at the 
plate. 

The behaviour of the unknown functions p,(h) at infinity are defined by conditions (1.5) 

Pj (h) = O(h'-j), 6 > 0 (2.2) 

It can be established that in this case the Meixner conditions (1.4) are satisfied. The contour 
of integration circumvents from below the poles of the integrand that lie on the positive semi- 
axis, and from above those on the negative semi-axis. Such a choice of the contour follows 
from the radiation condition. 

Representation (2.1) satisfies the Helmholtz equation and the radiation condition with 
respect to the z coordinate. The boundary condition (1.2) yields the integral equations 

I e~Pj(7)d’C=O, IXl>l 
-M 

(2.3) 

We now turn to the boundary-contact conditions (1.3). The plate displacement is expressed 
by the Fourier double integral 

51= (2.4) 

Passing to the limit with respect to y in the integrand, when substituting this expression into 
the boundary-contact conditions (1.3), we obtain a divergence of the integrals, which must be 
regularized. To simplify this procedure, we separate out the component in (2.4) corresponding 
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to the vacuum problem, To do this, the fraction in the integrand in (24) is represented in the 
form 

The first term in (2.5) produces the displacement E;r) in the problem for an isoiated plate, as 
is readily demonstrated by evaluating the integrals with respect to h. (Henceforth all the 
variables and parameters corresponding to the problem for an isolated plate will be marked 
with a zero superscript, the unity superscript refers to corrections.) The expressions obtained 
on subs~tuting this term into the borax-intact conditions were derived in fl]_ 

We now turn to the correction term Sy) which corresponds to the second term in (2.5). For 
this term the decay of the integrand appears to be sufficient to perform differentiation and 
passage to the limit in the iutegrand. As a result, we obtain integral equations over a segment 
which, together with (2.3), complete the reduction of the initial problem to a system of the 
paired dual integral equations. 

The integral equations that meet the r~~rements of F+c = F-g and Wr+t = M-5 along the 
entire axis admit of an explicit solution 

The remaining contact conditions reduce to the equations 

(2.6) 

The functions h and 4 differ from those reported in [1] by the additions generated by the 
correction terms (2.5) 

The further mathematical treatment is 
(2.3), we will seek p,(p) in the form 

a repetition of that reported in [lf_ To satisfy Eqs 

The behaviour of the functions qj(t) at the ends of the integration interval is described by 
the asymptotic forms (2.2) 
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q(f) = (l- t2)i-2+aQ(r,, 6 < 0, 

Changing the order of integration in (2.6) for qj(r) 
convolution over the section 

Q E CCL-411) (2.7) 

we obtain the integral equations of 

H,q, = iH,(x-r)q,(t)dt=~~“-“‘f,(x), I&l (2.8) 
-1 

The singular terms of the kernels H, are identical with those calculated in [l] for the case of 
diffraction at a crack in an isolated plate. Therefore, integral equations (2.8) are uniquely 
solvable in the classes (2.7), the factor 6 being equal to X. The solutions will be sought by the 
method of orthogonal polynomials 

42(0=(1-t2)H 5 a,U,(t). 
I=0 

4&I= (1-t%JWl%) 
S 

The choice of Chebyshev polynomials of the second kind U,(t) and of Gegenbauer poly- 
nomials C,‘“‘(t) is due to the fact that these polynomials from the eigenfunctions of the higher- 
terms of the integral operators H, and H3. 

As a result, the integral equations reduce to the following infinite algebraic systems 

-~(l+ 1) .a1 + le-*ki $A,&, = x-*fi(*) 
I=0 

$(1+1)*(1+2)(1+3)*& +lt-*k,3 EB,,$, ~.-*fi’~’ 
I=0 

(2.9) 

K=(1-0)(3+0) 

A (*) =ii(l-~*)~U,(x)M4~(x)dr 
-1 

jp3’ = -)(l-r*)X~~*)(,)F50(X)dX 
-1 

The decrease of hi(l)(u) at infinity leads to the decrease of the indices 1 and m of the 
corrections to the matrices A”) and B(O) which makes it possible, using the procedure similar 
to that of [1], to prove the unique solvability of systems (2.9). 

Changing the variables of integration 

p=zcosa, h=zsina 

the corrections A(‘) and L?(l) can be expressed by the double integrals 

(2.10) 

o” GZIrn+, VOZ) 23 AZ) = 16R&(I + l)(m + l)i’-m+’ j 
dz 

0 L(z) T4-1 

B;) _ -4k,v(~+3)!(m+3)!i/_m+l; G/:irn+2(RoT) z3 
llm! 0 L(z) yq--ld7 

GE)(x) = xfi,(~cosa)Jm(~cosa) 
(sin* a + a cos* a)* 

da 
0 cobs* a 

GE)(x)= SfJ,(xmsa)J 
m 

(Xmsa) (sin2 a+(2-a)Cos2 a)2 
sin* a da 

0 cos4 a 

L(z) = &c4 - l)JgxF+ v 
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3. ASYMPTOTIC FORMS OF THE FIELD AT LONG DISTANCES 

Let us consider two modes of excitation. 
1. A plane acoustic wave 

di) = exp(ik(xco6 (p. sin 0, + ysin q. sin $ + zcos O,)} 

2. A plane surface wave 

u’i~=exp(~~o(xcos(po+ysinQo)-~~~) 

Here z, is the positive root of the dispersion equation 

that asymptotically tends to v”’ as o + 0 [3]. 
In the first case, the geometrical part of the field u, is defined by the superposition of the 

plane wave u(‘), incident on and reflected from the plate 

rP) = R(B,)exp(’ ( lk xcosQosin80+ysinQosin80-zcos00)) 

W,)=R_ JR+, R& =ikcos80(k4sin480 -k+v 

((R(8,) is the reflection coefficient). 
In the second case, the geometrical part consists of an incident wave u(l) only. 

Let us now investigate the asymptotic forms of the diffraction part of the field in the far zone. 
To do this we change the variables (2.10) and evaluate the integral with respect to Q. The 
diffraction part of the field consists of an expanding surface wave formed by the contributions 
of the residue at the pole z = z,&’ 

43nrf - 
eiqf-iX14e-@g 

y6 (Q) 

and of the spherical wave which corresponds to the contribution of the saddle point z = z,,k;’ 
cosQ 

Here 

‘y,(Q,@ = 
-%c-‘k4 coSeSin2 8 

kcos8(k4sin28-k4)-vi bz(ksin~‘=Q)Q(Q)+ 

+p3(kSidhSQ)kSh8COSQ(sh2Q+(2-U)Cos’Q)) 

e(Q) = Sin2 Q+ dCOS2 Q 

Let us find the asymptotic forms of Y, and Y, with respect to the small parameter k, (i.e. 
with respect to k& in the initial notation). To do this we consider the first equation of (2.9). It 
can be verified that the higher-order terms of the asymptotic forms of the diagrams are 
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governed by the coefficient CL,. The other coefficients are of higher-order infinitesimal values 

~o~-~+~-z~(~~+~)]+...=~~-‘M~o(O,O) (3.1) 
&@I + 41 = o(~2V215) 

Here to is the plate displacement corresponding to h. The off-diagonal terms that are 
denoted by dots may be neglected in view of the higher-order infinitesimal values of the 
coefficients a,, a,, . . . . 

In the case of an incident plane acoustic wave, the right-hand side of lZq. (3.1) has the form 

~-1~i-~~eo~~~3~~~e0sin2eo~~~o~ 

which yields the asymptotic forms 

‘@“(cp) = -2(5n~)-‘R~a~v-“~ cosfJo sin2 e. Q((P)Q((P~) 

‘I’~1~(cp,t3)=ik7n2(mrv)-‘cos0osin2~oQ(~o)cnsMn28Q(cp) 

For the second case of excitation, the right-hand side of (3.1) has the following form 

which yields 

Yb’2’(cp) = -2i(5m)-'z;u2v-gQ(cpo)Q(,) 

Y’2’(qJ e) - a ’ - -R7T&2(ntcv)-1Q((PO)cos&sin2 9Q(cp) 

(3.2) 

(3.3) 

In formulae (3.2) and (3.3) we have used dimensional quantities again, and a is the half- 
length of the crack. 

It is worth noting that the discrepancy between the values of the diagrams Y$)(cp,, 0,, cp) and 
v)(cp, cpo, Cl,,) is due to the fact that the plane acoustic and surface waves have different 
energies. 

Comparing the asymptotic form (3.2) and the diagram in the problem of the scattering of the 
flexural waves by a crack in an isolated plate [l] 

WPO, cp) = it4 W1 (ko42 Q(lpo )Q(vP) (3.4) 

it can be seen that the presence of an acoustic medium results in an enlargement of the 
diagram. In the case of an infinite crack [3], the effect will be the opposite. In an isolated plate 
the crack will completely reflect the incident flexural wave, and the presence of an acoustic 
wave results in the appearance of a transmitted flexural wave. Thus, the acoustic medium, on 
one hand, results in the appearance of additional “paths” of circumventing the obstacle and 
thereby decreases the effective scattering cross-section. On the other hand, due to the presence 
of an acoustic medium, an additional scattering channel (of a wave entering an acoustic 
medium) occurs, and the scattering cross-section increases. When the crack is long enough, it 
is obvious that the first effect predominates, which also explains the result obtained in 131. For 
short cracks, as follows from a comparison of (3.3) and (3.4) the effect of the additionally 
occurring scattering channel predominates. 
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